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Second Order and Higher Order Systems 

 
1. Second Order System  

In this section, we shall obtain the response of a typical second-order control system to a step 
input. 
 
In terms of damping ratio ሺߞሻ	and natural frequency ሺ߱ሻ, the system shown in figure 1 , and 
the closed loop transfer function ܥሺݏሻ/ܴሺݏሻ given by the equation 1 
 

ሻݏሺܥ
ܴሺݏሻ

ൌ
߱ଶ

ଶݏ  ݏ߱ߞ2  ߱ଶ
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This form is called the standard form of the second-order system. 
 
The dynamic behavior of the second-order system can then be description in terms of two 
parameters ߞ and ߱. 
 
We shall now solve for the response of the system shown in figure 1, to a unit-step input. We 
shall consider three different cases: the underdamped ሺ0 ൏ ߞ ൏ 1ሻ , critically damped ሺߞ ൌ 1ሻ, 
and overdamped ሺߞ  1ሻ 
 
1) Underdamped Case ሺ ൏ ࣀ ൏ ሻ : 

In this case, the closed-loop poles are complex conjugates and lie in the left-half s plane. The 
  ሻ can be written asݏሻ/ܴሺݏሺܥ
 

ሻݏሺܥ

ܴሺݏሻ
ൌ

߱ଶ

ሺݏ  ߱ߞ  ݆߱ௗሻሺ߱ߞ െ ݆߱ௗሻ
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Where ߱ௗ ൌ ߱ඥ1 െ -ଶ, the frequency ߱ௗis called damped natural frequency. For a unit stepߞ
input, ܥሺݏሻ can be written  
 

ሻݏሺܥ ൌ
߱ଶ

ଶݏሺݏ  ݏ߱ߞ2  ߱ଶሻ
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By apply the partial fraction expansion and the inverse Laplace transform for equation 3, the 
response can give by  
 



2 | P a g e  
C o n t r o l   L a b o r a t o r y  
 

ܿሺݐሻ ൌ 1 െ
݁ିఠ௧

ඥ1 െ ଶߞ
sin ൭߱ௗݐ  tanିଵ ൭

ඥ1 െ ଶߞ

ߞ
൱൱ 
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If the damping ratio ߞ is equal to zero, the response becomes undamped and oscillations continue 
indefinitely. The response	ܿሺݐሻ for the zero damping case may be obtained by substituting ߞ ൌ 0 
in Equation 4, yielding 
 

ܿሺݐሻ ൌ 1 െ cos߱5 ݐ
 
 
 

2) Critically Damped Case ሺࣀ ൌ ሻ 

If the two poles of ܥሺݏሻ/ܴሺݏሻ are equal, the system is said to be a critically damped one. For a 
unit-step input, ܴሺݏሻ ൌ  ሻ/ can be writtenݏሺܥ and ݏ/1
 

ሻݏሺܥ
ܴሺݏሻ

ൌ
߱ଶ

ݏሺ	ݏ  ߱ሻଶ
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By apply the partial fraction expansion and the inverse Laplace transform for equation 6, the 
response can give by 
 

ܿሺݐሻ ൌ 1 െ ݁ିఠ௧ሺ1  ߱ݐሻ 7
 
 

3) Overdamped Case ሺࣀ  ሻ: 

In this case, the two poles of ܥሺݏሻ/ܴሺݏሻ  are negative real and unequal. For a unit-step input, 
ܴሺݏሻ ൌ  ሻ can be writtenݏሺܥ and ݏ/1
 

ሻݏሺܥ

ܴሺݏሻ
ൌ

߱ଶ

ݏ൫ݏ  ߱ߞ  ߱ඥߞଶ െ 1൯൫߱ߞ െ ߱ඥߞଶ െ 1൯
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By apply the partial fraction expansion and the inverse Laplace transform for equation 6, the 
response can give by 
 

ܿሺݐሻ ൌ 1 
߱

2ඥߞଶ െ 1
ቆ
݁ି௦భ௧

ଵݏ
െ
݁ି௦మ௧

ଶݏ
ቇ 

 

ଵ,ଶݏ ൌ ߞ േ	ඥߞଶ െ 1 
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Thus, the response ܿሺݐሻ includes two decaying exponential terms. 
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A family of unit-step response curves ܿሺݐሻ with various values of z is shown in Figure1 , where 
the abscissa is the dimensionless variable ߱ݐ. 

 
Figure 1: Unit step response curves of the system 

 
 

2. Definition of Transient-Response Specification: 

 
Frequently, the performance characteristics of a control system are specified in terms of the 
transient response to a unit-step input, since it is easy to generate and is sufficiently drastic. (If the 
response unit step input is known, it is mathematically possible to compute the response to any 
input.) 
 
The transient response of a system to a unit-step input depends on the initial conditions. For 
convenience in comparing transient responses of various systems, it is a common practice to use 
the standard initial condition that the system is at rest initially with the output and all time 
derivatives thereof zero. Then the response characteristics of many systems can be easily 
compared. 
 
The transient response of a practical control system often exhibits damped oscillations before 
reaching steady state. In specifying the transient-response characteristics of a control system to a 
unit-step input, it is common to specify the following: 
 

1. Delay time, ݐௗ 
2. Rise time , ݐ 
3. Peak time, ݐ 
4. Maximum overshoot, ܯ 
5. Settling time, ݐ௦ 

 
These specifications are defined in what follows and are shown graphically in Figure 2. 
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Figure 2: Step response specification 

 
These specifications are defined in what follows and are shown graphically in Figure 2. 
 
1. Delay time, ࢊ࢚: The delay time is the time required for the response to reach halfthe final value 
the very first time. 
 
2. Rise time, ࢚࢘: The rise time is the time required for the response to rise from 10% to 90%, 5% 
to 95%, or 0% to 100% of its final value. For underdamped second order systems, the 0%to 
100%rise time is normally used. For overdamped systems, the 10% to 90% rise time is commonly 
used. 
 
3. Peak time, ࢚: The peak time is the time required for the response to reach the first peak of the 
overshoot. 
 
4. Maximum overshoot, ࡹ: The maximum overshoot is the maximum peak value of the 
response curve measured from unity. If the final steady-state value of the response differs from 
unity, then it is common to use the maximum percent overshoot. The amount of the maximum 
(percent) overshoot directly indicates the relative 
stability of the system. 
 
5. Settling time, ࢙࢚:The settling time is the time required for the response curve to reach and stay 
within a range about the final value of size specified by absolute percentage of the final value 
(usually 2% or 5%). The settling time is related to the largest time constant of the control system. 
Which percentage error criterion to use may be determined from the objectives of the system 
design in question. 

 
The time-domain specifications just given are quite important, since most control systems are time-
domain systems; that is, they must exhibit acceptable time responses. (This means that, the control 
system must be modified until the transient response is satisfactory.) 
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2.1 Second Order System and Transient- Response Specifications… 
 
In the following, we shall obtain the rise time, peak time, maximum overshoot, and settling time 
of the second-order system These values will be obtained in terms of ߞ and ߱.The system is 
assumed to be underdamped. 
 

1. Rise time , ࢚࢘ 
 

ݐ ൌ
ߨ െ ߚ
߱ௗ

 

where angle ߚ is defined in figure 3. Clearly, for a small value of ݐ , ߱ௗ must be large. 

 
Figure 3 

 
2. Peak time, ࢚ 

          Since the peak time corresponds to the first peak overshoot, 

ݐ ൌ
ߨ
߱ௗ

 

The peak time	ݐcorresponds to one-half cycle of the frequency of damped oscillation. 
 

3. Maximum overshoot, ࡹ 
            Assuming that the final value of the output is unity 

  

ܯ ൌ ݁
ିగ
ඥଵିమ 

If the final value ܿሺ∞ሻ of the output is not unity, then we need to use the following       
equation: 

ܯ ൌ
ܿ൫ݐ൯ െ ܿሺ∞ሻ

ܿሺ∞ሻ
 

 
4. Settling time, ࢙࢚ 

For convenience in comparing the responses of systems, we commonly define the 
settling time , ݐ௦ to be 
 

௦ݐ ൌ
4
߱ߞ

 (2% criterion) 

௦ݐ ൌ
3
߱ߞ

 (5% criterion) 
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3. Higher Order Systems 

In this section we shall present a transient-response analysis of higher-order systems in general 
terms. It will be seen that the response of a higher-order system is the sum of the responses of first-
order and second-order systems. 
 
Consider the system shown in Figure4 .The closed-loop transfer function is 
 

ሻݏሺܥ

ܴሺݏሻ
ൌ

ሻݏሺܩ

1  ሻݏሺܪሻݏሺܩ
 

 
In general, ܩሺݏሻ and ܪሺݏሻ are given as ratios of polynomials in ݏ, or 
 

ሻݏሺܩ ൌ
ሻݏሺ
ሻݏሺݍ

ሻݏሺܪ												݀݊ܽ																						 ൌ
݊ሺݏሻ
݀ሺݏሻ

 

 

 
Figure 4: Control System 

 
The closed loop T.F. of any linear invariant system can be expressed as : 

1
1 1 0

1
1 1 0
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The factorized form is given as: 

1 2

1 2
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The response of the system for a step input can be: 

1. Real distinct roots: 

1

( )
n

i

i i

ra
C s

s s p

 
  

Where ir  resembles the residue of the ith pole at is p  . 
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ܿሺݐሻ ൌ ܽ ݎ݁
ି௧



ୀଵ

 

 
Notes: 

 

 

 

 

 

 

 

 

 

 

2.  
 
Real poles and pairs of complex conjugate poles: ( )C s may be given as: 
 

2

2 2
1 1

( ) 1
( )

2

q r
j k k k k k k

j kj k k k

r b s w c wa
C s

s s p s w s w

 
 

  
  

     

 
    This means that the factored form of the poles of higher order systems consists of first and 2nd 
order terms. As a result, the response of the higher order system is composed of a number of 
terms involving the responses of first order and 2nd order systems. The response is given as: 

   2 2

1 1 1

( ) cos 1 sin 1j k k k k

q r r
p t w t w t

j k k k k k k
j k k

c t a a e b e w t c e w t    

  

                  

 

which means that for a stable higher order with nonrepeated simple or complex roots, the response 
is the sum of a number of exponential curves (for real distinct roots) and damped sinusoidal curves 
(for unrepeated complex poles). 

 

 

 

 For a stable system, the relative magnitudes of the residues determine the 
relative importance of the corresponding poles. 

 If there is a closed loop zero close to a closed loop pole, then the residue 
of this pole is small. 

 A pair of closely located poles and zeros will effectively cancel each 
other. 

 If a pole is located very far from origin, the residue of this pole may be 
small and its response will last for a short time. 

 Pole having very small residues contribute little to the transient response 
and correspondingly may be neglected 

 After neglecting, the higher order system may be approximated by a lower 
order one. 
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 For a stable higher order system, the exponential terms and the damped or sinusoidal curves 
will approach zero as t  and the steady state output ( )ssy a y    

 As the real part of the poles moves farther from the origin or |real part| increase then the 
response of that pole decay rapidly to zero and correspondingly the setting time of that pole 
decrease. That is,  

partreal
t s

1
 

 The type of transient response is determined by the closed loop poles, while the zeros of 
the close loop T.F. do affect the magnitudes and signs of the residues of the expanded 
terms. 

 The poles of the input ( )R s yield the steady state in the solution while the poles of the 
closed loop T.F. yield the transient response terms of the solution as they enter exponential 
transient response terms and/or damped sinusoidal transient response terms. 

 

3.1 Dominant closed loop poles:  

The relative dominance of closed loop poles is determined by: 

1) The ratio of the real parts of closed loop poles 
2) The relative magnitudes of the poles residues which depend on both the closed loop poles and 

zeros. 
 If the real part of the closest pole to the “jw” axis is (5 - 10) times less than the real part of the 
closest pole to this pole and there are no zeros nearly, then former pole is called dominant closed 
loop pole since this pole will dominant the transient response and will decay slowly. 
 The dominant closest loop poles are the most important among all closed loop poles. 
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4. System Identification of Second Order and Higher Order System 

In the control system, the system identification process is applied to system by assume the input 
is step response  

 

And the question now, How I can determine the transfer function of the system form measured 
output data ??  

 

The step response is given in the following figure 5, and to determine the transfer function we 
follow the following step 

1) Determine the settling time and the Overshoot of system 
2) Determine the natural frequency ߱ and the damping ratio ߞ 

 

ܯ ൌ ݁
ିగ
ඥଵିమ 

 

௦ݐ ൌ
4
߱ߞ

 (2% criterion) 

௦ݐ ൌ
3
߱ߞ

 (5% criterion) 

 

3) The standard form of second order system is given by  
 

߱ଶ

ଶݏ  ݏ߱ߞ2  ߱ଶ
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Figure 5 

From the over shoot determine ߞ 

ܯ ൌ ݁

షഅഏ

ටభషഅమ ൌ 1.163 െ 1 ൌ 0.163    we find ߞ ൌ 0.5 
 

 
And from the settling time , determine  
 

௦ݐ ൌ
ସ

ఠ
ൌ 2  we find    ߱ ൌ 4  

 
16

ଶݏ  ݏ4  16
 


